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Abstract—Heterocyclic 5-amino uracil derivatives were prepared by catalytic amination of 1,3-dibenzyl-5-iodouracil using
(CuOTf)2·PhH, 1,10-phenanthroline, dibenzylidene acetone, and Cs2CO3 as base in xylenes at 95°C. Imidazole and 2-amino
thiazoline were problematic using the Cu catalyst, but were effectively coupled using Ni(COD)2, dppf, and NatOBu in toluene at
100°C. These are the first examples of catalytic amination with a uracil substrate. © 2001 Elsevier Science Ltd. All rights reserved.

The copper catalyzed coupling of imidazoles with aryl
iodides and bromides using (CuOTf)2·PhH, 1,10-phenan-
throline (phen), dibenzylidene acetone (dba), Cs2CO3, in
refluxing xylenes was recently reported.7 Our attempts to
couple the 5-iodouracil derivative 1 with imidazole using
these conditions were unsuccessful, producing only the
deiodinated uracil. However, we were pleasantly sur-
prised to find that this Cu catalyst system was successful
for the coupling of 1 with a wide variety of other amines.8

The results are shown in Table 1. Primary heteroaryl and
alkyl amines, and the secondary alkyl amine morpholine
all gave satisfactory results and good yields. The temper-
ature of the reaction in xylene was reduced to 95°C in
order to minimize competitive deiodination. The concen-
tration of the reagents was also found to be important,
and reactions did not proceed to completion when more
dilute conditions (<0.09 M Cu catalyst) were used.

In addition to the failure of the Cu catalyst to couple 1
with imidazole, the reaction with 2-aminothiazoline was
also unsuccessful, and deiodination was observed (entry
5). Recent reports of Ni catalysts such as Ni(O)/2,2%-
bipyridine system for coupling aryl chlorides and 2- and
3-chloropyridines with secondary amines,2j–l and the
Ni(COD)2/1,1%-bis(diphenylphosphino)ferrocene (dppf)
catalytic system for the amination of aryl chlorides with
primary, secondary and aryl amines,2f and 3-chloropy-
ridine with benzophenone imine,2g led us to try a Ni

Catalytic coupling reactions offer convenient and ver-
satile methods for the synthesis of heterocyclic com-
pounds, and are important tools for drug discovery. A
wide variety of catalytic C�C bond forming reactions
have been carried out using 5-iodouracil.1 Catalytic
amination of aryl halides is an efficient method for the
synthesis of anilines.2 Relatively few examples of cata-
lytic amination reactions of heterocyclic compounds,2e–l,3

or nucleosides4 have been reported, and there are no
examples of the catalytic amination of 5-iodouracil. Our
interest in synthesizing 5-aminouracil derivatives 2 as
potential antiviral compounds5 led us to investigate
various Pd, Cu, and Ni catalytic systems for C�N bond
formation between 1,3-dibenzyl-5-iodouracil 1 and a
variety of heterocyclic amines.

Our initial experiments were focused on C�N cross
coupling of 1 with imidazole. The combination of Pd
catalysts with chelating bis-phosphine ligands3c or bulky,
electron rich biphenyl phosphine ligands2h have been
shown to be effective for the amination of a variety of
aryl and pyridyl halides. None of these examples involved
coupling with imidazole, and previous attempts to couple
imidazole using palladium catalyst/ligand combinations
were reported to be unsuccessful.6 Our attempts at
imidazole amination of 1 using Pd2(dba)3/Cs2CO3 with
either BINAP or 2-(dicyclohexylphosphino)biphenyl lig-
ands in toluene at 100°C were similarly unsuccessful. No
reaction was evident under these conditions, and starting
1 was recovered.

Keywords : uracil; heterocycle; catalytic amination; copper catalyst;
nickel catalyst.
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aReactions were carried out with 1.43 mmol 1, 2.15 mmol amine, 1.57 mmol Cs2CO3, 0.07 mmol (CuOTf)2.PhH,

1.43 mmol 1,10 phenanthroline (phen),  0.07 mmol dibenzylidene acetone (dba) in p-xylene 1.5 ml, 95o C, 24 h.
bReactions were carried out with 1.43 mmol  1, 2.15 mmol amine, 2 mmol of NatOBu, 0.07 mmol Ni(COD)2,  

0.14 mmol 1,1-bis (diphenyl phospino) ferrocene (dppf), in toluene (2 mL), 100o C, 24 h.  cProducts were purified 

by silica gel column chromatography. All compounds were characterized by NMR (1H, 13C) and HRMS.
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Table 1. Amination of 1,3-dibenzyl-5-iodouracil

catalyst for these substrates. We found that 1 undergoes
amination with imidazole (1) and 2-amino thiazoline
(entry 5) in 52 and 61% yields, respectively, using
catalyst Ni(COD)2/dppf/NatOBu/toluene at 100°C for
24 h.9 Competing deiodination was evident in both cases
under these conditions, and the isolated 1,3-dibenzyl-
uracil can be recycled by iodination.

In summary, the catalytic amination of 5-iodouracil has
been demonstrated for the first time using copper or
nickel catalysts. A variety of heterocyclic derivatives
were obtained in moderate to very good yields. Further
studies using Ni(COD)2/dppf for heterocycle-amine
coupling are in progress.
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